Characterization of metal binding by a designed protein: single ligand substitutions at a tetrahedral Cys2His2 site.
نویسندگان
چکیده
The tetrahedral Cys2His2 Zn(II)-binding site in the de novo designed protein Z alpha 4 [Regan, L., & Clarke, N. D. (1990) Biochemistry 29, 10878] has been studied by independently mutating each of the metal-binding ligands to alanine. The contribution of each ligand to the geometry and affinity of metal binding has been characterized using Co(II), Zn(II), and Cd(II). The results indicate that all four ligands contribute to high-affinity metal binding in Z alpha 4. Two of the four metal-site mutants retain the tetrahedral Zn(II)-binding geometry of Z alpha 4, with one water molecule presumed to bind in the vacant ligand position. These mutants provide the first examples of a demonstrated de novo tetrahedral three-coordinate site designed into a protein and as such are a first step toward the design of catalytic rather than structural Zn(II) sites. One of the metal-site mutants binds Zn(II) with either tetrahedral four-coordinate or five-coordinate geometry, while the last ligand-to-alanine substitution abolishes tetrahedral binding. The importance of ligand type for metal-binding in Z alpha 4 was investigated by characterizing two ligand-swap mutants in which a cysteine residue was replaced with a histidine. In both cases, tetrahedral metal binding was lost. Collectively, these results affirm the strategy used to design Z alpha 4 by showing that all designed liganding residues are participating in metal binding, and by suggesting that the tetrahedral geometry of the binding site is perturbed when the designed side chain ligands are replaced with alternate ligands.
منابع مشابه
Construction of a family of Cys2His2 zinc binding sites in the hydrophobic core of thioredoxin by structure-based design.
A semi-automated, rational design strategy has been used to introduce a family of seven single, mononuclear Cys2His2 zinc sites at various locations in the hydrophobic core of Escherichia colithioredoxin, a protein that is normally devoid of metal centers. The electronic absorption spectra of the CoII complexes show that five of these designed proteins bind metal with the intended tetrahedral g...
متن کاملA tetrahedral zinc(II)-binding site introduced into a designed protein.
The ultimate goal of protein engineering is to create novel proteins which will adopt predetermined structures, bind specified ligands, and catalyze new reactions. Here we describe the successful introduction of metal-binding activity into a model four helix bundle protein. The designed binding site is tetrahedral and is formed by two Cys and two His ligands on adjacent helices. We have introdu...
متن کاملStructural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase
Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...
متن کاملSynthesis and characterization of some transition metal complexes of Schiff base derived from 2,4 - dihydroxybenzaldehyde
Abstract New N2O2 type Schiff base has been designed and synthesized by condensing 2,4 dihydroxy benzaldehyde and α-naphthylamine in ethanol. Solid metal complexes of the schiff base with Cu(II), Ni(II) and Zn(II) metal ion were synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis and ‘H NMR spectral studies. The data shows that the c...
متن کاملComparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea
Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 34 31 شماره
صفحات -
تاریخ انتشار 1995